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Saving energy is beneficial for the environment and easier on the pocketbook. The myriad benefits of improving energy efficiency 

have been well-documented: lower electric bills for consumers, reduced load on utilities, reduced cost of ownership for electronics 

products and fewer spent batteries thrown away in landfills. 

As the use of electronic devices pervades virtually every aspect of our lives, reducing power consumption must start at the 

semiconductor level. The power-saving techniques that are designed in at the chip level have a far-reaching impact. This is 

especially true with regard to the microcontrollers (MCUs) that serve as the intelligent engines behind a majority of today’s 

electronic devices. 

From a systems architecture perspective, the challenge of identifying which MCUs truly are “low-power” requires designers to 

navigate though the myriad claims made by various semiconductor vendors. Because of the different (and often confusing) metrics 

used by vendors, this is not a simple task. 

Let’s take a closer look at the key factors that should be considered when analyzing the power efficiency of competitive MCU 

alternatives. 

At a basic level, MCU power consumption can be defined as the sum of the following: 

Total power consumed = Active mode power + Standby (sleep) mode power 

However, another important metric to keep in mind is the amount of time it takes for an MCU to transition from a standby state into 

an active state. Since the MCU cannot do any useful processing until all of the digital and analog components are fully settled and 

operational, it is important to add in this (wasted) power when calculating total power consumption: 

Total power consumed = Active mode power + Standby (sleep) mode power + Wake-up power 

 

Because every application is different, systems designers will have a tendency to weight some of these elements more than others. 

For example, some applications such as water meters spend most of their time in a standby state so clearly their long duty cycles 



require very low standby power consumption. Other applications such as data loggers go in and out of active states often so 

limiting the time spent in the wake-up transition modes is critical. However, a vendor developing a compelling MCU solution will not 

attempt to guess which of these metrics is most important but instead will design a solution from the ground-up that focuses on 

minimizing every part of this equation. To accomplish this requires strong mixed-signal expertise to address both the architectural-

level and circuit-level challenges necessary to minimize power in both the analog and digital domains. A short discussion on each 

of these variables will help highlight the types of issues systems designers need to be aware of when attempting to select the best 

MCU solution for their application. 

Active Mode Current  

For a CMOS logic gate, the dynamic power consumption can be rewritten using the following well-known equation: 

Active mode power = C * V
2
 * f 

where C is the load capacitance, V is the supply voltage, and f is the switching frequency 

The capacitance term is a function of the design and processing technology being used, and the frequency term is a function of the 

application’s processing requirements. However, as can be seen in the equation above, the supply voltage has a disproportionate 

impact on the overall power consumed by the MCU. Therefore, adding voltage regulation to the MCU design can yield significant 

active mode power savings by providing a much lower steady supply voltage to the MCU’s circuitry. Switching -type converters may 

be a possible solution but they are best suited for regulator environments requiring large voltage conversion ratios. However, for 

battery-type applications where the average voltage conversion ratio is small (approaching 1:1 at the end of the battery life), a 

better solution would be to add an on-chip low drop-out (LDO) linear voltage regulator since it can offer acceptable efficiency with 

lower complexity and cost than a switching solution. 

Active mode power = C * V
2
 * f 

 = V * (C * V * f) 

 = V * I, where the dynamic current I = C * V * f 

It is common to normalize the dynamic current to a frequency of 1 MHz and a particular supply voltage. For example, one recently 

introduced ultra low-power MCU has a dynamic current consumption of 160 μA per MHz at 1.8 V. Without supply regulation, this 

metric would increase to (160) * (3.2/1.8) = 284 μA per MHz when the supply vo ltage is 3.2 V. With an LDO, the battery current will 

remain fixed at 160 μA per MHz across the entire supply range.  

As can be seen, this advanced power architecture can be used to maintain a constant active current over the full operating voltage 

range and can help systems designers achieve a significant savings in power consumption. Therefore, from a systems designer 

perspective, it is important to determine the MCU current consumption when operating across the entire operating voltage range - 

not just at the 1.8V minimum operating condition that is commonly quoted by MCU vendors. Quoting an overly optimistic current 

number that assumes anything less than a typical voltage supply does not accurately reflect how applications are used in the real-

world. As an example, in 2 x AA/AAA and coin cell battery applications, the batteries operate near their 3V initial voltage most often 

so the quoted 1.8V specification can be deceiving since when viewed from this perspective most MCUs will consume around 50 

percent more power than what is commonly quoted. 



 

Furthermore, since power consumption is directly proportional to the switching frequency, it is important for systems designers to 

normalize the quoted current numbers down to a current / MHz basis. By combining these two factors, it is possible to perform a 

side-by-side comparison of MCUs based on the following metric: 

 Current consumption / MHz @ 3V 

Some vendors will attempt to confuse the issue by equating “MHz” to system clock speed when the value that is truly meaningful is 

instruction clock speed. This is deceiving since system clock speeds can run at twice (or more) their actual instruction speed 

thereby doubling (or more) their effective power consumption. It is therefore important to make sure everything is normalized to 

instruction clock speed. By doing this, and by using a typical supply voltage, it will be possible to properly derive the actual active 

mode current consumption budget. 

Standby (Sleep) Current  

Achieving maximum energy efficiency (and battery life) translates into ensuring that each MCU task consumes the minimum 

possible current at the minimum possible voltage for the shortest possible duration so that the device spends the majority of its time 

in a very low-power sleep mode. In some applications, the sleep-mode current is the parameter most responsible for overall 

energy consumption. However, what is often overlooked is that the absolute minimum sleep current achievable by an MCU is 

primarily limited by its leakage current. For example, a 20-input device that has an input leakage current specification of 100nA 

could consume up to 2uA of power while in sleep mode. 

Leakage current is affected by a number of factors, but the most important one is the underlying process technology that is used. In 

some cases, vendors will choose to use 0.25 or 0.35-micron process technology to reduce the sleep current caused by leakage, 

but this choice comes at the expense of a higher active current. In other cases, MCU vendors choose to use 0.18-micron or smaller 



process technologies to reduce active mode current, but this comes at the expense of higher leakage currents. A unique solution 

around this dilemma is to apply mixed-signal expertise to implement an advanced power management unit (PMU) designed 

specifically to limit leakage and to enable ultra-low sleep current regardless of the underlying process technology that is used. 

When using process technologies of 0.25-micron or smaller, minimizing sleep-mode current requires cutting power to the digital 

core. Modules that operate in sleep mode, such as power management circuits, I/O pad cells, and an RTC, must operate from 

the unregulated voltage supply to avoid burning additional current in an LDO. Cutting power to the digital core logic also prevents 

its off-state leakage from contributing to the sleep-mode current; however, the MCU must preserve RAM contents and the state of 

all registers during sleep mode so that code execution can resume right where it left off. This preservation may be performed either 

by means of some very low-current sleep-mode latch biasing scheme or by the use of special retention latches that can hold the 

state in sleep mode without significant leakage. The MCU also needs some form of continuous supply voltage monitoring (i.e. 

“brownout detection”) to reset the device in the event that the supply voltage drops below the minimum retention voltage, which 

could corrupt the state. 

From a systems designer perspective, it is therefore important to examine the underlying leakage current specifications to 

determine which MCU vendors have applied their mixed-signal expertise towards solving this complex problem. Designers should 

also consider the fact that most vendors offer many different standby current options. Most suppliers will highlight their absolute 

lowest sleep mode current, which will often correspond to the current being consumed with the real-time clock and brownout 

detector disabled. Some vendors will go a step further and quote a shutdown mode current that does not retain memory and 

requires a reset to wake up, which in general is not a very practical mode. Therefore, since most applications will require full RAM 

and register retention, it is important for a system designer to perform a side-by-side comparisons based on the following metrics: 

 Standby/sleep mode current with real-time clock and brownout disabled (with RAM retention) 

 Standby/sleep mode current with real-time clock disabled and brownout enabled 

 Standby/sleep mode current with real-time clock and brownout enabled 

A system designer can then use the correct values when calculating the overall standby mode power budget based on the duty 

cycle of their application. 

Wake-up Energy  

As discussed earlier, in systems that use sleep modes a significant amount of power can be wasted waking up the MCU and 

preparing it to acquire or process data. In fact, in certain applications an MCU can often use just as much energy when coming out 

of standby as when the device is fully processing data. Therefore, it is important to design an MCU to wake-up and settle in an 

extremely short amount of time in order to minimize the amount of time spent in an energy-wasting state. 

The MCU should be able to exit sleep mode from either an external trigger event or an internal timer. The most flexible periodic 

wakeup source is a real-time clock having the capability of being run from an external crystal oscillator (for applications requiring 

accurate timing) or from a low-frequency internal oscillator that eliminates the need for a crystal in lower-accuracy applications. 

Avoid using a slow-starting crystal oscillator for the high-speed system clock; an accurate, quick-starting, on-chip oscillator is a 

better alternative. 



In addition, since many products wake up periodically to sample an input using on-chip ADCs, it is important to allow enough time 

for both the digital circuitry to wake-up and the analog circuitry to settle to begin making valid measurements. The startup behavior 

of the analog modules can have a major impact on the amount of time spent in active mode; voltage regulators or references 

utilizing external decoupling caps can take milliseconds to settle. At times, MCU vendors will only quote the wake-up times for the 

digital circuitry while ignoring the time it takes for the analog circuitry to settle. Therefore, it is important for a systems designer to 

analyze the overall wake-up and settling time for both the digital and analog circuitry to factor in the true cost of this wasted energy. 

Other Considerations  

There are of course other ways to further reduce power in a system. For example, 2 x AA/AAA battery configurations are commonly 

used due to the fact that MCUs often can typically only operate down to 1.8 V and even then, sometimes only with reduced 

functionality (no ADC; reduced instruction clock speed). An innovative way to reduce power (and environmental impact) is to 

convert the design to a single battery configuration where the battery can be operated all the way down to the end of their useful life 

(0.9V). To enable this, an MCU must integrate a highly optimized DC-DC converter that can be operate to the lowest usable voltage 

of the battery, which in the case of alkaline chemistry is 0.9V. This approach can also save the supplier and/or the consumer the 

cost of a battery. 

Another method for reducing power is to use highly integrated MCUs that include ADCs, DACs and other peripherals since the 

MCU can be given control over enabling and disabling these peripherals as needed by the applications. For example, some MCUs 

offer a specialized low-power ADC with burst mode that can take analog measurements while the CPU is off in an effort to further 

minimize power consumption. 

Summary  

It is understandably a challenge to parse through the various conflicting claims presented by MCU vendors. However, for a majority 

of applications, it may be best to simply revert to the fundamental power consumption equation to cut through the clutter: 

Total power consumed = Active mode power + Standby (sleep) mode power + Wake-up power 

Because every application will be affected by the combination of standby power, active mode power and wake-up power, it may be 

helpful for systems designers to simply start any analysis by systematically breaking down the power consumption numbers into the 

parts shown above. Once these numbers have been derived, a system designer can then factor in the application’s duty cycles – 

the amount of time the application expects to spend in standby, active and wake-up modes – to calculate an overall average power 

consumption number. The resulting value should provide the system designer a close approximation that can be used to objectively 

evaluate and compare MCU alternatives to achieve the lowest possible system-level power consumption. 

 


